Program Listing for File ElectronPairProduction.cpp
↰ Return to documentation for file (src/module/ElectronPairProduction.cpp
)
#include "crpropa/module/ElectronPairProduction.h"
#include "crpropa/Units.h"
#include "crpropa/ParticleID.h"
#include "crpropa/ParticleMass.h"
#include "crpropa/Random.h"
#include <fstream>
#include <limits>
#include <stdexcept>
namespace crpropa {
ElectronPairProduction::ElectronPairProduction(ref_ptr<PhotonField> photonField,
bool haveElectrons, double limit) {
this->haveElectrons = haveElectrons;
this->limit = limit;
setPhotonField(photonField);
}
void ElectronPairProduction::setPhotonField(ref_ptr<PhotonField> photonField) {
this->photonField = photonField;
std::string fname = photonField->getFieldName();
setDescription("ElectronPairProduction: " + fname);
initRate(getDataPath("ElectronPairProduction/lossrate_" + fname + ".txt"));
if (haveElectrons) { // Load secondary spectra only if electrons should be produced
initSpectrum(getDataPath("ElectronPairProduction/spectrum_" + fname.substr(0,3) + ".txt"));
}
}
void ElectronPairProduction::setHaveElectrons(bool haveElectrons) {
this->haveElectrons = haveElectrons;
if (haveElectrons) { // Load secondary spectra in case haveElectrons was changed to true
std::string fname = photonField->getFieldName();
initSpectrum(getDataPath("ElectronPairProduction/spectrum_" + fname.substr(0,3) + ".txt"));
}
}
void ElectronPairProduction::setLimit(double limit) {
this->limit = limit;
}
void ElectronPairProduction::initRate(std::string filename) {
std::ifstream infile(filename.c_str());
if (!infile.good())
throw std::runtime_error("ElectronPairProduction: could not open file " + filename);
// clear previously loaded interaction rates
tabLorentzFactor.clear();
tabLossRate.clear();
while (infile.good()) {
if (infile.peek() != '#') {
double a, b;
infile >> a >> b;
if (infile) {
tabLorentzFactor.push_back(pow(10, a));
tabLossRate.push_back(b / Mpc);
}
}
infile.ignore(std::numeric_limits < std::streamsize > ::max(), '\n');
}
infile.close();
}
void ElectronPairProduction::initSpectrum(std::string filename) {
std::ifstream infile(filename.c_str());
if (!infile.good())
throw std::runtime_error("ElectronPairProduction: could not open file " + filename);
double dNdE;
tabSpectrum.resize(70);
for (size_t i = 0; i < 70; i++) {
tabSpectrum[i].resize(170);
for (size_t j = 0; j < 170; j++) {
infile >> dNdE;
tabSpectrum[i][j] = dNdE * pow(10, (7 + 0.1 * j)); // read electron distribution pdf(Ee) ~ dN/dEe * Ee
}
for (size_t j = 1; j < 170; j++) {
tabSpectrum[i][j] += tabSpectrum[i][j - 1]; // cdf(Ee), unnormalized
}
}
infile.close();
}
double ElectronPairProduction::lossLength(int id, double lf, double z) const {
double Z = chargeNumber(id);
if (Z == 0)
return std::numeric_limits<double>::max(); // no pair production on uncharged particles
lf *= (1 + z);
if (lf < tabLorentzFactor.front())
return std::numeric_limits<double>::max(); // below energy threshold
double rate;
if (lf < tabLorentzFactor.back())
rate = interpolate(lf, tabLorentzFactor, tabLossRate); // interpolation
else
rate = tabLossRate.back() * pow(lf / tabLorentzFactor.back(), -0.6); // extrapolation
double A = nuclearMass(id) / mass_proton; // more accurate than massNumber(Id)
rate *= Z * Z / A * pow_integer<3>(1 + z) * photonField->getRedshiftScaling(z);
return 1. / rate;
}
void ElectronPairProduction::process(Candidate *c) const {
int id = c->current.getId();
if (not (isNucleus(id)))
return; // only nuclei
double lf = c->current.getLorentzFactor();
double z = c->getRedshift();
double losslen = lossLength(id, lf, z); // energy loss length
if (losslen >= std::numeric_limits<double>::max())
return;
double step = c->getCurrentStep() / (1 + z); // step size in local frame
double loss = step / losslen; // relative energy loss
if (haveElectrons) {
double dE = c->current.getEnergy() * loss; // energy loss
int i = round((log10(lf) - 6.05) * 10); // find closest cdf(Ee|log10(gamma))
i = std::min(std::max(i, 0), 69);
Random &random = Random::instance();
// draw pairs as long as their energy is smaller than the pair production energy loss
while (dE > 0) {
size_t j = random.randBin(tabSpectrum[i]);
double Ee = pow(10, 6.95 + (j + random.rand()) * 0.1) * eV;
double Epair = 2 * Ee; // NOTE: electron and positron in general don't have same lab frame energy, but averaged over many draws the result is consistent
// if the remaining energy is not sufficient check for random accepting
if (Epair > dE)
if (random.rand() > (dE / Epair))
break; // not accepted
// create pair and repeat with remaining energy
dE -= Epair;
Vector3d pos = random.randomInterpolatedPosition(c->previous.getPosition(), c->current.getPosition());
c->addSecondary( 11, Ee, pos, 1., interactionTag);
c->addSecondary(-11, Ee, pos, 1., interactionTag);
}
}
c->current.setLorentzFactor(lf * (1 - loss));
c->limitNextStep(limit * losslen);
}
void ElectronPairProduction::setInteractionTag(std::string tag) {
interactionTag = tag;
}
std::string ElectronPairProduction::getInteractionTag() const {
return interactionTag;
}
} // namespace crpropa