Class TurbulenceSpectrum
Defined in File TurbulentField.h
Inheritance Relationships
Base Type
public Referenced
(Class Referenced)
Derived Type
public SimpleTurbulenceSpectrum
(Class SimpleTurbulenceSpectrum)
Class Documentation
-
class TurbulenceSpectrum : public Referenced
Defines the energy spectrum of turbulence parametrizied by A(k) ~ k^q /(1 + k^2)^{(s + q)/2 + 1}.
Subclassed by SimpleTurbulenceSpectrum
Public Functions
-
inline TurbulenceSpectrum(double Brms, double lMin, double lMax, double lBendover = 1, double sIndex = (5. / 3.), double qIndex = 4)
- Parameters:
Brms – root mean square field strength for generated field
lMin – Minimum physical scale of the turbulence
lMax – Maximum physical scale of the turbulence
lBendover – the bend-over scale
sIndex – Spectral index of the energy spectrum in the inertial range
qIndex – Spectral index of the energy spectrum in the energy range
-
inline ~TurbulenceSpectrum()
-
inline double getBrms() const
-
inline double getLmin() const
-
inline double getLmax() const
-
inline double getLbendover() const
-
inline double getSindex() const
-
inline double getQindex() const
-
inline virtual double energySpectrum(double k) const
General energy spectrum for synthetic turbulence models (not normalized!) with normalized ^k = k*lBendover
-
inline virtual double getCorrelationLength() const
Computes the magnetic field coherence length Obtained from the definition of \(l_c = 1/B_{\rm rms}^2 \int_0^\infty dr\langleB(0)B^*(r)\rangle \) Approximates the true value correctly as long as lBendover <= lMax/8 (~5% error) (for the true value the above integral should go from lMin to lMax)
-
inline size_t addReference() const
-
inline size_t removeReference() const
-
inline int removeReferenceNoDelete() const
-
inline size_t getReferenceCount() const
Protected Functions
-
inline double spectrumNormalization() const
Normalization for the below defined Lc
Protected Attributes
-
mutable size_t _referenceCount
-
inline TurbulenceSpectrum(double Brms, double lMin, double lMax, double lBendover = 1, double sIndex = (5. / 3.), double qIndex = 4)