Program Listing for File EMTripletPairProduction.cpp
↰ Return to documentation for file (src/module/EMTripletPairProduction.cpp
)
#include "crpropa/module/EMTripletPairProduction.h"
#include "crpropa/Units.h"
#include "crpropa/Random.h"
#include <fstream>
#include <limits>
#include <stdexcept>
namespace crpropa {
static const double mec2 = mass_electron * c_squared;
EMTripletPairProduction::EMTripletPairProduction(ref_ptr<PhotonField> photonField, bool haveElectrons, double thinning, double limit) {
setPhotonField(photonField);
setHaveElectrons(haveElectrons);
setLimit(limit);
setThinning(thinning);
}
void EMTripletPairProduction::setPhotonField(ref_ptr<PhotonField> photonField) {
this->photonField = photonField;
std::string fname = photonField->getFieldName();
setDescription("EMTripletPairProduction: " + fname);
initRate(getDataPath("EMTripletPairProduction/rate_" + fname + ".txt"));
initCumulativeRate(getDataPath("EMTripletPairProduction/cdf_" + fname + ".txt"));
}
void EMTripletPairProduction::setHaveElectrons(bool haveElectrons) {
this->haveElectrons = haveElectrons;
}
void EMTripletPairProduction::setLimit(double limit) {
this->limit = limit;
}
void EMTripletPairProduction::setThinning(double thinning) {
this->thinning = thinning;
}
void EMTripletPairProduction::initRate(std::string filename) {
std::ifstream infile(filename.c_str());
if (!infile.good())
throw std::runtime_error("EMTripletPairProduction: could not open file " + filename);
// clear previously loaded interaction rates
tabEnergy.clear();
tabRate.clear();
while (infile.good()) {
if (infile.peek() != '#') {
double a, b;
infile >> a >> b;
if (infile) {
tabEnergy.push_back(pow(10, a) * eV);
tabRate.push_back(b / Mpc);
}
}
infile.ignore(std::numeric_limits < std::streamsize > ::max(), '\n');
}
infile.close();
}
void EMTripletPairProduction::initCumulativeRate(std::string filename) {
std::ifstream infile(filename.c_str());
if (!infile.good())
throw std::runtime_error(
"EMTripletPairProduction: could not open file " + filename);
// clear previously loaded tables
tabE.clear();
tabs.clear();
tabCDF.clear();
// skip header
while (infile.peek() == '#')
infile.ignore(std::numeric_limits < std::streamsize > ::max(), '\n');
// read s values in first line
double a;
infile >> a; // skip first value
while (infile.good() and (infile.peek() != '\n')) {
infile >> a;
tabs.push_back(pow(10, a) * eV * eV);
}
// read all following lines: E, cdf values
while (infile.good()) {
infile >> a;
if (!infile)
break; // end of file
tabE.push_back(pow(10, a) * eV);
std::vector<double> cdf;
for (int i = 0; i < tabs.size(); i++) {
infile >> a;
cdf.push_back(a / Mpc);
}
tabCDF.push_back(cdf);
}
infile.close();
}
void EMTripletPairProduction::performInteraction(Candidate *candidate) const {
int id = candidate->current.getId();
if (abs(id) != 11)
return;
// scale the particle energy instead of background photons
double z = candidate->getRedshift();
double E = candidate->current.getEnergy() * (1 + z);
if (E < tabE.front() or E > tabE.back())
return;
// sample the value of eps
Random &random = Random::instance();
size_t i = closestIndex(E, tabE);
size_t j = random.randBin(tabCDF[i]);
double s_kin = pow(10, log10(tabs[j]) + (random.rand() - 0.5) * 0.1);
double eps = s_kin / 4. / E; // random background photon energy
// Use approximation from A. Mastichiadis et al., Astroph. Journ. 300:178-189 (1986), eq. 30.
// This approx is valid only for alpha >=100 where alpha = p0*eps*costheta - E0*eps
// For our purposes, me << E0 --> p0~E0 --> alpha = E0*eps*(costheta - 1) >= 100
double Epp = 5.7e-1 * pow(eps / mec2, -0.56) * pow(E / mec2, 0.44) * mec2;
double f = Epp / E;
if (haveElectrons) {
Vector3d pos = random.randomInterpolatedPosition(candidate->previous.getPosition(), candidate->current.getPosition());
if (random.rand() < pow(1 - f, thinning)) {
double w = 1. / pow(1 - f, thinning);
candidate->addSecondary(11, Epp / (1 + z), pos, w, interactionTag);
}
if (random.rand() < pow(f, thinning)) {
double w = 1. / pow(f, thinning);
candidate->addSecondary(-11, Epp / (1 + z), pos, w, interactionTag);
}
}
// Update the primary particle energy.
// This is done after adding the secondaries to correctly set the secondaries parent
candidate->current.setEnergy((E - 2 * Epp) / (1. + z));
}
void EMTripletPairProduction::process(Candidate *candidate) const {
// check if electron / positron
int id = candidate->current.getId();
if (abs(id) != 11)
return;
// scale the particle energy instead of background photons
double z = candidate->getRedshift();
double E = (1 + z) * candidate->current.getEnergy();
// check if in tabulated energy range
if ((E < tabEnergy.front()) or (E > tabEnergy.back()))
return;
// cosmological scaling of interaction distance (comoving)
double scaling = pow_integer<2>(1 + z) * photonField->getRedshiftScaling(z);
double rate = scaling * interpolate(E, tabEnergy, tabRate);
// run this loop at least once to limit the step size
double step = candidate->getCurrentStep();
Random &random = Random::instance();
do {
double randDistance = -log(random.rand()) / rate;
// check for interaction; if it doesn't occur, limit next step
if (step < randDistance) {
candidate->limitNextStep(limit / rate);
return;
}
performInteraction(candidate);
step -= randDistance;
} while (step > 0.);
}
void EMTripletPairProduction::setInteractionTag(std::string tag) {
interactionTag = tag;
}
std::string EMTripletPairProduction::getInteractionTag() const {
return interactionTag;
}
} // namespace crpropa