Program Listing for File SimpleGridTurbulence.cpp
↰ Return to documentation for file (src/magneticField/turbulentField/SimpleGridTurbulence.cpp
)
#include "crpropa/magneticField/turbulentField/SimpleGridTurbulence.h"
#include "crpropa/GridTools.h"
#include "crpropa/Random.h"
#ifdef CRPROPA_HAVE_FFTW3F
#include "fftw3.h"
namespace crpropa {
SimpleGridTurbulence::SimpleGridTurbulence(const SimpleTurbulenceSpectrum &spectrum,
const GridProperties &gridProp,
unsigned int seed)
: GridTurbulence(spectrum, gridProp, seed) {
initTurbulence(gridPtr, spectrum.getBrms(), spectrum.getLmin(),
spectrum.getLmax(), -spectrum.getSindex() - 2, seed);
}
void SimpleGridTurbulence::initTurbulence(ref_ptr<Grid3f> grid, double Brms,
double lMin, double lMax,
double alpha, int seed) {
Vector3d spacing = grid->getSpacing();
checkGridRequirements(grid, lMin, lMax);
size_t n = grid->getNx(); // size of array
size_t n2 = (size_t)floor(n / 2) +
1; // size array in z-direction in configuration space
// arrays to hold the complex vector components of the B(k)-field
fftwf_complex *Bkx, *Bky, *Bkz;
Bkx = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * n * n * n2);
Bky = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * n * n * n2);
Bkz = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * n * n * n2);
Random random;
if (seed != 0)
random.seed(seed); // use given seed
// calculate the n possible discrete wave numbers
double K[n];
for (size_t i = 0; i < n; i++)
K[i] = (double)i / n - i / (n / 2);
double kMin = spacing.x / lMax;
double kMax = spacing.x / lMin;
Vector3f n0(1, 1, 1); // arbitrary vector to construct orthogonal base
for (size_t ix = 0; ix < n; ix++) {
for (size_t iy = 0; iy < n; iy++) {
for (size_t iz = 0; iz < n2; iz++) {
Vector3f ek, e1, e2; // orthogonal base
size_t i = ix * n * n2 + iy * n2 + iz;
ek.setXYZ(K[ix], K[iy], K[iz]);
double k = ek.getR();
// wave outside of turbulent range -> B(k) = 0
if ((k < kMin) || (k > kMax)) {
Bkx[i][0] = 0;
Bkx[i][1] = 0;
Bky[i][0] = 0;
Bky[i][1] = 0;
Bkz[i][0] = 0;
Bkz[i][1] = 0;
continue;
}
// construct an orthogonal base ek, e1, e2
if (ek.isParallelTo(n0, float(1e-3))) {
// ek parallel to (1,1,1)
e1.setXYZ(-1., 1., 0);
e2.setXYZ(1., 1., -2.);
} else {
// ek not parallel to (1,1,1)
e1 = n0.cross(ek);
e2 = ek.cross(e1);
}
e1 /= e1.getR();
e2 /= e2.getR();
// random orientation perpendicular to k
double theta = 2 * M_PI * random.rand();
Vector3f b = e1 * cos(theta) + e2 * sin(theta); // real b-field vector
// normal distributed amplitude with mean = 0 and sigma =
// k^alpha/2
b *= random.randNorm() * pow(k, alpha / 2);
// uniform random phase
double phase = 2 * M_PI * random.rand();
double cosPhase = cos(phase); // real part
double sinPhase = sin(phase); // imaginary part
Bkx[i][0] = b.x * cosPhase;
Bkx[i][1] = b.x * sinPhase;
Bky[i][0] = b.y * cosPhase;
Bky[i][1] = b.y * sinPhase;
Bkz[i][0] = b.z * cosPhase;
Bkz[i][1] = b.z * sinPhase;
} // for iz
} // for iy
} // for ix
executeInverseFFTInplace(grid, Bkx, Bky, Bkz);
fftwf_free(Bkx);
fftwf_free(Bky);
fftwf_free(Bkz);
scaleGrid(grid, Brms / rmsFieldStrength(grid)); // normalize to Brms
}
} // namespace crpropa
#endif // CRPROPA_HAVE_FFTW3F